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ANISOTROPY OF CREEP OF M A T E R I A L S  
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It has been shown that when ordinary stress-strain (o--e) diagrams 

are constructed for 20-ram thick roiled duralumin plate at various 

temperatures, the alloy behaves l ike an isotropic material ,  while a 

considerable degree of anisotropy is observed in creep testing. 

A short review of studies of the anisotropy of creep of meta t l ic  and 

nonmetal l ic  materials  was given in [1], where concepts of the theory 

of plastic flow were used to demonstrate some possibilities of describ- 

ing the anisotropy of creep by means of theoretical results in processing 

experimental  data on the creep of plastics. The aim of the present in- 

vestigation was to study, as in [2], the anisotropy of steady-state creep 

from the standpoint of the theory of viscous flow. 

1. The specimens used in taking stress-strain diagrams were made 

from blanks cut in the plane of the rolled plate at O ~ 48 ~ and 90 ~ to 

the rolling direction. The gauge portion of the tensile test pieces was 

50 mm, their diameter 12 mm; specimens for compression tests were 

8 mm in diameter, The tests were carried out at several constant tem-  

peratures, The measurements of the absolute strain and continuously 

increasing load in compression tests were recorded on motion-picture 

film and subsequently processed; in tensiie tests, the load was increased 

in steps with the aid of weights and the strain gauges were read visually. 
One compression test lasted not more than 10 sec; i t  took 80-86 see to 
carry out a tensiIe test. After plotting the stress-strain diagram, the 

cross section of each specimen was measured; in no case was any evi-  

dence of oval i ty  found. 
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Fig. 1 

The results of these tests are reproduced in Fig. 1, where black 

circles, open circles and open triangles relate to data obtained in 
compression for specimens at 0 ~ 45 ~ and 90 ~ to the roiling direction, 

respectively; crosses relate  to data for transverse tensile test pieces. It 

will  be seen that al l  the points obtained at a given test temperature 

form a very narrow band not only in the elastic but also in the plastic 

range, from which it may be concluded that the mater ia l  tested is iso- 

tropic with respect to its elastoplastic characteristics. 

Quite different results were obtMned in the creep tests. These were 

carried out on tensile specimens of the same shape and cut in the same 

directions relat ive to the direction of rolling as in the short-time tests. 

During each test measurements were taken of the axial  elongation and 

dimensional changes of two mutually perpendicular specimen diameters, 

one of which was normal to the plane of the original pla~e. The trans- 

verse strains were measured with four miemgauges mounted in dia- 
metr ical ly  opposite positions (on two mutually perpendicular diameters) 

on an invar ring which, secured to an elastic mount, was fitted round 

the heating furnace. The variation in specimen diameter was trans- 

mitted to the microgauges through quartz rods; the readings were taken 

visually or recorded with a motion-picture camera. 
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Fig, 2 

The creep tests were carried out at 200~ and at stresses of G-10 
kg/mm~; creep curves constmcted under these conditions showed practi- 

cal ly no primary creep stage. The load either remained constant or was 

varied in stepwise fashion; in either case, the creep rates under equal 
loads were the same, and the creep rate deviated from a constant value 

only for a re la t ively short t ime when the load was increased. The sum 
of strains in three mutually perpendicular directions always approached 

zero, especially in the high stress range. 
Creep curves obtained at o = 8 k g / m m  z are reproduced in Figure 2, 

where curves a and b relate  to longitudinal and transverse tensile spe- 

cimens and show the corresponding axial  and radial strains. In both 

cases the rate of radial  strain in a direction normal to the plane of the 
rolled plate was faster than the rate in a direction perpendicular to that 

direction, it being found that 

Tlsa (1) : ~l~e (1) = kl ~ 2,7 -- in the first case 

~lm (2) : qn (s) = k2 ~ 2 --  in the second case.  

(1.1)  

Here, and subsequently, the indices denote directions: 1 - t h e  

direction of rolling; 2 - n o r m a l  to the direction of rolling; 8)--normal 
to the plane of the roiled plate; the upper index indicates the direction 

of the applied load. Thus, for instance, "~a~Z)denotes the rate of strain 

in the third direction under the influence of an axial  load applied in 

the second direction. 
To compare the behavior of the mater ia l  studied in tension and 

compression, creep tests were carried out on cylindrical compression 

specimens (85 mm long, 12 mm diam. ) cut in the same directions as 

for the tensile creep tests. The tests were carried out at the same 
temperature and in the same stress range, but only the axial  strains 

were measured. The rates of creep in compression were in every case 

almost ident ical  with the corresponding rates in tension, although the 

agreement was slightly worse in the high stress range. 

The next series of compression tests was carried out on specimens 

of square cross section (10 x 10 x 19 ram) cut in the direction normal to 

the plane of the roiled plate; here again only the axial  strains were 
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measured. Taking into account the fact that the behavior of the ma- 
terial tested in the plane of the rolled plate is the same in tension and 
in compression, the possibility of extending this property to all the 
other directions was postulated. 

The behavior of the material in creep was satisfactorily described 
by an equation of the flow theory type 

rl = B~a '~. (1.2) 

Here ~ is the creep strain rate, and I31 and n denote material con- 
stants. Processing of the experimental data gave the following values: 

7/ = 8 (for all stresses); 
(I. 3) B1 = 5 X 10 -1~ [mm~n/kgnhr] (in the direction of rolling); 

B z = 3X 10 "~~ [mm~n/kgnhr] (in the dixection normal to rolling); 
B s 17 X 10 "~ [mmSn/kgnhr] (in the direction normal to the plane 

of the roiled plate). 

Thus, the properties of the material are characterized by orthotrop- 
ism with quite a pronounced degree of anisotropy in crrep, in spite of 

the fact that the elastoplastic characteristics under short-time loading 
conditions are almost fully isotropic. 

2. As previously stated, the main part of the creep strain under the 
experimental conditions employed (both at constant and stepwise in- 
creasing loads) is steady-state creep, and the process itself may be 
regarded as viscous flow with a nonlinear viscosity law. Ziegler [3]. 
who used thermodynamic considerations in an attempt to prove the 
existence of creep potential for viscolinear media, showed that On- 
sager's theory may be hypothetically extended to the case of visco- 
nonlinear processes, when the creep potential is not a quadratic form 
of the variables. In the case of an isotropic body with visco-nonlinear 
flow, the creep potential should be taken in the form of a function of 
the stress tensor invariants or, in a simpler case, a function of a quad- 
ratic invariant, i . e . ,  the stress intensity [4]. Extending this supposition 
to weakly anisotropic bodies, we assume that the creep potential is a 
function of a certain quadratic form, i. e.,  that the following relation- 
ship holds 

O0 (T) 
T = aHk z c~i~%Z. (2. I) 

qi~ = Oc~i~ 

Here z)ij are the creep strain rate tensor components, and T de- 
notes a positive definite quadratic form which has 21 independent coef- 
ficients in the case of a body with arbitrary anisotropy and 18 coeffi- 
cients in the case of a specially selected coordinate system [5]. 

For a uniaxial stress state Eq. (2. 1) should coincide with Eq. (L 2), 
so that it is expedient to represent the potential function as a power 
function of the quadratic form 

@ (T) = T (n+~)l~. (2.2) 

In the case of an orthotropic body, the number of coefficients of 
the quadratic form can be reduced to six by choosing a coordinate sys- 
tem which is congruent with the principal anisotropy axes. In fact, 
multiplying both sides Of (9. 1) by oij, summing over the indices, and 
taking into account (2. 2). we obtain 

~i~li~ = (n § i)  T(n+) )12, (2. 3) 

i. e., in the stress space the specific power of energy dissipation in 
creep coincides (correct to a constant) with the creep potential. It is 
evident that with the given system of applied loads the specific power 
of energy dissipation does not depend on the choice of the coordinate 
system. Reversing in turn the direction of each of the coordinate axes, 
it can be easily demonstrated that the number of coefficients is re- 

duced to nine, and that the quadratic form becomes 
2 T (o~j) = allllO'll t -~- a2222(1222 @ a3333~I33 "t-2a112~Ol10"22 @ (2. 4) 

-~ 2a1133OllO33 § 2a2233022033 "-~ 4n1~o~:~ @ 4a131301] § 4a2,3230'232o 

As stated above, experiment supports the hypothesis of incompres- 
sibilky of materials in creep, but then from (2. 1) and (2. 4) we have 

I]i I = (~2 § t )  T (n-~)ls (am16 n § a1122022 -~- g11330"33), 
1122 ~ (~ "@ ~) T(~'-I)/2 (a2211(I11 -~- d~222glJ22 -~- a1283033), 
TI33 ~ (/z -~- 1) T (~'l-1)/s (a33j.lOll -~- 123322022 ~- a3333(~33). 

Hence it follows that 

~]11 § ~]2~ § ~]~3 = (n § t)  T (n-ills [(altll J- a3~11 § aa31~) c~11 § 

§ (a1122 § az22~ Jr- a~32~) O22 § (al13a § ae2aa § a3333) (1~3] -~- 0. 

This equality should be identically satisfied for any values of oij and . . . . .  
T(clij ) ~ 0; hence there follow the three additional conditions 

/a1111 § asgtl + a3311) = (a1122 § a~22z § a~3gl~) = 

= (all~8 -~- az233 § a3~33 ) = 0, 

and the quadratic form is represented by an expression previously used 
by Hill to describe anisotropic plasticity 

(All  = - -  //2233* A22 = - -  a11~3, A33 = - -  a2211, 

A12 = 2all,z, Ae~ = 2a2~23, An1 ~ 2aal~) " 

(s. 5) 

The remaining six coefficients are determined from the results of 
creep tests under uniaxial stress state conditions. Let us assume that the 
characteristics of univariate creep in the three principal directions, 
i . e . ,  B l, gz, and I3 s, are known. If, taking into account (2.2) and 
(2. 5), each of the normal stresses (in the appropriate principal direc- 
tion) in (2. 1) is successively assumed to be nonzero, if rite expression 
obtained is equated to (1.2) with the corresponding value of B 1, and 
if then the terms associated with o n are equated, a system of three 
equations for A u, A22, and Ass is obtained 

( B1 ~21(n+1) ~/ B2 ~ 2/('ll+l) 
A22 § A33 = \ n - ~ - l  ) , A~  § All : t ~ )  ' 

( B~ ~21(n+i) (2. 6) 

Solving these equations, we find 

[ B~ W(n+~) / B~ ~'(n+~ ( B~. ?/(n+~) (2. 7) 

The other two coefficients are obtained by cyclic permutation of the 
indices, 

For the material under consideration, substituting the values of B 
and n from (1. 3), we obtain 

20 20 
All 0.53.i0 /', Ass = 0.62.i0- /', 

A33 = 0.25.10-'~ [mmSn /kg~t~ ]2(n+l). 

If no experiments were carried out in the third direction, and if 
transverse strains were measured during tests in, for instance, the first 
direction, then from (2. 1), (2. 2) and (2.3) we have 

~133(1) = - -  (n -~ 1) [A22 § A~3] (n-1)12 A ~ o  n , 
~hs(1) = --  (n -}- t) [Ase + An3] In-1)I2 Ar~3o "n, (2. 8) 

(1) (t) 
the ratio 71ss : 7122 = kl being knowri from experiment. 

Using the first two equations in (2. 6), we find 

(% 9) 

A i l = \ n §  t @ k i  \ n §  " 

The third equation in (2. 6) makes it possible to determine B s from 
k 1 and known constants B i and t~ 

B~ YB~/(~+~ + k~-- t Bs/,,+,T,,+,/s (2. lo) 
= k  s k ~ §  ~ J " 

Similar relations can be obtained from experiments in the second 
direction; in particular, B s will be 

L[B2'(n+~) • k2 - -  t ns/{n+o~(n+~)/~ B3 (2. 1.1) 
k2 § t ~ s  j " 
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Substituting in (2.10) and (2. 11) the appropriate values from (1.1) 
and (1.8), we find 

B 3 = 19 x 10 -t0 (from experiments in the first direction); 
B s = 1~ x 10 -~0 (from experiments in the second direction). 

Both these values are in good agreement with the value Ba = 17 x 10 "l~ 
obtained from compression tests. 

In a number of specific cases (e. g.,  a tube or a sphere under in- 
ternal pressure, a rotating disc), when the problem is solved for the 
principal stresses and the coordInate system is congruent with the princi- 
pal anisotropy axes, it is sufficient for the quadratic form to contain 
only the three coefficients Arv A~2, and Ass, since the iast three are 
not used in finding the solution. 

To determine the remaining three coefficients in (2. 6), it is 
necessary to know the characteristics of univariate creep in three di- 
rections which do not lie on one plane and which do not coincide with 
the principal directions. Let us, for the sake of simplicity, assume that 
these directions are in the three coordinate planes. Let us also intro- 
duce a new coordinate system obtained from the original by rotating 
axes X~ and X z about axis X3 through a positive angle of 48 ~ From ex- 
periments carried out in the direction X~ we know B12 arid n. Expressing 
the stress components (related to the old coordinate system which is 
congruent with the principal anisotropy axes) in terms of the stress (~v 
(whose direction coincides with the axis Xi of the new system) 

and substituting their values in (2. 1), we find, taking into account 
(2. 2) and (2. 6), the strain rate tensor components in the old coordinate 
system 

n - I - I  t ( ~ - O ~ -  , n 
]h~ = T - -  [A~ + .I~,~ + 2.- 1:] ,%~,% , 

n i l  

n @ l  " A n ~ls~ = --  " ~ - -  [AI~ + A~ + 2A,~] (n-1)/~ (An.+ ~) % , 

n + l  
'~|12 ~ T]21 = ~ IAn -~ A~2 + 2All] ('z-z) 2 Al~% }~. 

Performing an inverse transformation, we express the normal 
components of the strain rates in the new coordinate system in terms 

of the values of ~?ij in the old system : 

~ + t  "]11' = - ~ -  [An + A~ + 2Av~] (n-~)/'z (A~ + A~ + 2A~) %n, 

n- ] - i  
~]~2' ~ ~ [All @ A~ -}- 2Al~] (r~-~>'2 (An -c A~ --  2Al~) %n, 

(2. 12) 

~s' = --  ~ [An -1 A22 + 2A~21 (n-~)/2 2 (An + A~) %n. 

Equating the expression for the first of these components to (1. 2) 
n 

and substituting the values B~2, we obtain (after eliminating Or) an 

equation 
n + l  

B m =  .Th2T- t A n  + A'2~. + 2Av~] (n+l)/~ (2. 13) 

from which the coefficient A~2 is determined : 

( Ba2 ~21{~+~) (2. 14) 
2 A l ~ = 4 \ t ~ _ 7 t ]  --A~I--A2~. 

Rotating now the old coordinate system through 45 ~ in the plane 
XrX~ without altering the position of X 2 and performing similar calcula- 

tions, we obtain 

n + t 2A]~](n+~)/~ (2. 15) B~s = ~ [Axx + Aaa -7 , 

from which we find h~ 

( Bx~ ~z'{n+~) (2.16) 
2A~s = 4 \ ~ - ~ - /  - -  An - -  A~a. 

Finally, performing a similar operation in the plane X z X~ and re- 

peating the calculation, we find A~a : 

/ B~ \~/(n+O (2.17) 

Owing to technical difficulties, experiments in the direction not 
coinciding with one of the principal directions were carried out only in 

the plane X~X z at 45 ~ to the roiling direction. It was found that B12 = 
= 3. ~ X 10 -10 and the ratio of transverse creep strains ~s :  ~z~ = k12 ~ 2.1. 

From (2. 14), substituting the values B~2, A~, and A~2, we find 
A~2 = 1, 1 X 10-z~ the last two equations in (2. 12) give 

2 (All + A2~) 
~18~' : ~h'/-- 2Al~ - -  An - -  A~ - 2.25, 

which is in satisfactory agreement with the experimental value of k12. 

Fig. 3 

From (2, 1) we have 

d(D An d(D 1 
2 ~ ~, = -A- ',1,1 -t- C, 2~-~ z,2 = ~  ~1-,, 

,~q) A,,~ d e  t (2. 18) 

dq) A~3 dq) t 

Here, the value 
A ~ AnAoz + A22A33 ~- A33All (2. 19) 

is larger than zero in view of the positive definiteness of the quadratic 
form (2. 5), and C is an arbitrary constant appearing in the solution due 
to the linear dependence of the first three equations in (2. 1). Expressing 
oij from (2.18) in terms of d ~ / d T  and ~?ij and substituting in (2.5), we 
obtain (taking into account (2.2)) after some simple transformations, in 

view of incompressibiIity of the material, 

(n -t- t)~ Ta ~ 2 ~ -} ~ ~1.~2 ~ (2. 20) 

2 2 2 

i. e.,  the same functional dependence as that which in (1.2) relates 

the quadratic forms of the stresses and strain rates. 
Equation (2. 20) may be written in the form 

i n + I) T (n+D/2 = (/~ + 1) -V~ p(n+l),'2n (2.21) 

Comparison with (2.3) leads to the conclusion that the right side of 
(2.21) represents the specific power of energy dissipation in strain rate 
space. Taking the derivative of this expression, multiplying both sides 

by ~ij and summing, we obtain 

(n + t) (n-O/n r{,~,n!2 n = (2. 22) 
r~ Y iJ ~]i] . 

Hence, in view of (2.21), we conclude that Yij represents (correct to 
its factor) the stress tensor components, and the function 

F (rti) = qP (n+l)/2n (q - -  proportionality factor) (2. 23) 

by analogy with (2. 2) may be called the stress potential function. 

Figure g shows, in the deviatoric plane, the projections of the sur- 
faces of constant specific power of energy dissipation in creep in: a) 
stress space �9 = const, and b) strain rate space F = const. Both surfaces 
are convex and represent, respectively, potential surfaces for: a) strain 

rates and b) stresses. 
When the degree of anisotropy decreases and all B 1 approach a sin- 

gle value B0, from (2. 7), (2. 14), (2. 16), and (2. 17) we obtain 

3 ( Bo ~2'{n,1) (2. 24) 
3An = 3A~ = 3Ass = AI~ = Ass = A31 = T \ t T ~ ]  

the quadratic forms T and F are transformed, respectively, into the 
second invariants of the stress and strain rate deviators, and the relation 
(2, 20) becomes an expression describing the dependence of strain rate 
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on stress intensity, which is often used in calculations relating to steady- 
state creep. 

Thanks are due to A. F. Nikitenko for his assistance in obtaining 
and proee~ing the experimental data. 
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